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Abstract. Supervised methods for 3D anatomy segmentation demon-
strate superior performance but are often limited by the availability of
annotated data. This limitation has led to a growing interest in self-
supervised approaches in tandem with the abundance of available un-
annotated data. Slice propagation has emerged as an self-supervised
approach that leverages slice registration as a self-supervised task to
achieve full anatomy segmentation with minimal supervision. This ap-
proach signicantly reduces the need for domain expertise, time, and the
cost associated with building fully annotated datasets required for train-
ing segmentation networks. However, this shift toward reduced supervi-
sion via deterministic networks raises concerns about the trustworthiness
and reliability of predictions, especially when compared with more ac-
curate supervised approaches. To address this concern, we propose the
integration of calibrated uncertainty quantication (UQ) into slice prop-
agation methods, providing insights into the model’s predictive reliability
and condence levels. Incorporating uncertainty measures enhances user
condence in self-supervised approaches, thereby improving their prac-
tical applicability. We conducted experiments on three datasets for 3D
abdominal segmentation using ve UQ methods. The results illustrate
that incorporating UQ improves not only model trustworthiness, but
also segmentation accuracy. Furthermore, our analysis reveals various
failure modes of slice propagation methods that might not be immedi-
ately apparent to end-users. This study opens up new research avenues to
improve the accuracy and trustworthiness of slice propagation methods.
Github: SlicePropUQ
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1 Introduction

Achieving precise segmentation of 3D anatomy in MRI and CT volumes is crit-
ical for downstream tasks, including disease monitoring [3], diagnostic processes
[12], and treatment planning [17]. Supervised deep learning models are the state
of the art for 3D segmentation of various anatomies and tumors [21]. However,
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achieving high levels of performance requires an enormous quantity of annotated
image volumes [19]. Annotating these 3D volumes, which falls outside the scope
of standard clinical routines, is both costly and time-intensive, as it necessi-
tates the specialized knowledge of several radiologists, whose expertise is often
in short supply. Therefore, it is crucial to develop techniques for 3D anatomy
segmentation that can operate eectively with limited or no annotations.

Several machine learning approaches have been developed for 3D anatomy
segmentation with limited annotations. Semi-supervised methods (e.g., [6,25])
use a combination of fully annotated volumes as well as un-annotated volumes
to train deep learning models. These methods often utilize student-teacher frame-
works, enhancing model performance through mechanisms such as consistency
loss or mutual information maximization. Techniques such as pseudo-labeling
and sample ltering are also used to augment the annotated data pool to en-
hance the trained model [4,27]. However, these methods still require high-quality,
fully or partially annotated volumes for eective training and validation, limiting
their utility in situations where annotated data are scarce or entirely unavailable.

Slice propagation methods (e.g., [5,30]) have evolved to oer a self-supervised
approach for anatomy segmentation, eliminating the need for any annotated vol-
umes for model training. Such methods use slice registration as a self-supervised
task to establish correspondences between adjacent slices. During inference, only
one annotated slice in the given volume is required to obtain a segmentation of
the entire 3D anatomy. These methods reduce the burden on specialist of anno-
tating entire volumes for training image segmentation networks. With signicant
amount of available un-annotated dataset, training networks on self-supervised
slice-to-slice registration also signicantly increases the amount of training data,
enhancing the model’s ability to generalize. Moreover, these networks are trained
to recognize pixel-wise correspondences of key low-level geometric features across
various anatomies. As a result, they can adapt to a diverse range of anatomies,
making them eective for inference on previously unseen anatomical structures.
However, the performance of these self-supervised models is not yet comparable
to that of supervised or semi-supervised methods trained on comparable quanti-
ties of data. Such a performance gap raises concerns about the accuracy, quality,
and trustworthiness of model predictions. Given that deep learning models al-
ways produce outputs, irrespective of the condence level of the prediction, it
becomes crucial to quantify and analyze the reliability and accuracy of these self-
supervised methods. This scrutiny is particularly important in clinical scenarios
where false negatives and false positives can critically impact patient outcomes.

Uncertainty quantifcation (UQ) is a key technique that helps identify when
model predictions are reliable for clinical use or when extra caution is needed
[14]. High predicted UQ values could ag potential incorrect segmented regions,
guiding user interactions and renement [22]. UQ analysis can also help in identi-
fying failure modes of dierent methodologies that are not immediately apparent
to the end-user. Uncertainty in deep learning predictions can be attributed to
(a) the inherent uncertainty in the input data (aleatoric uncertainty) and (b) the
uncertainty in model parameters due to limited training data (epistemic uncer-
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tainty) [16]. Aleatoric uncertainty can be directly modeled as a function of the
input data. Epistemic uncertainty is more challenging to quantify, as it requires
learning a distribution over model weights, but it sheds light on the model’s
knowledge gaps and directly correlates with the availability and diversity of the
training data. Hence, this work primarily focuses on epistemic UQ. This paper
makes the following contributions to the broader goal of establishing safe and
trustworthy deep-learning models for medical applications:

– The integration of epistemic UQ in self-supervised slice propagation meth-
ods, Sli2Vol [30] and Vol2Flow [5], for analyzing the reliability and inter-
pretability of anatomy segmentation.

– A comprehensive benchmark of ve state of the art methods for epistemic
UQ on three datasets.

2 Uncertainty in Slice Propagation

This section outlines the slice propagation techniques we consider in this paper
and our adaptations to incorporate dierent UQ methods.

2.1 Slice Propagation Methods

Sli2Vol [30] and Vol2Flow [5] are the state-of-the-art approaches for 3D volume
segmentation using a single slice annotation. Let I ∈ R

H×W×D denote a 3D
image, where H, W and D are the height, width, and depth of the volume.
These methods provide a segmentation of the entire volume propagating one
manually annotated slice Si ∈ R

H×W , where i ∈ {1, . . . , D} to the entire 3D
volume by learning robust pixel-wise correspondences between adjacent slices
in the volume via adjacency matrices. For example, given two adjacent slices,
Si and Si+1, the models predict an anity matrix Ai+1,i. This matrix is then

used to transform Si to acquire an estimate of slice (i + 1), denoted Ŝi+1. The

dierence between the estimated slice, Ŝi+1, and the original slice, Si+1, is then
used for model training. Subsequent sections detail the dierences between the
methods.

Sli2Vol [30]: In Sli2Vol training, a pair of adjacent slices are rst sam-
pled from a training volume. An edge profle generator is applied to the slices
to extract edge features, followed by a convolutional neural network. An an-
ity matrix is then computed to capture the feature similarity between the two
slices. The model is trained using a self-supervised mean square error (MSE)
loss between the original slice and the slice reconstructed via the anity matrix.
During inference, the anity matrices generated by the trained model are used
to propagate the mask of the annotated slice throughout the volume iteratively.
A verication module is also used to correct the propagated masks at each step,
minimizing error accumulation and improving segmentation accuracy.

Vol2Flow [5]: Whereas Sli2Vol utilizes a 2D CNN for slice-by-slice trans-
formation, Vol2Flow employs a 3D registration network to apply a sequence
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of transformations across the entire volume, enabling dense segmentation mask
generation for each test volume. Vol2Flow’s architecture is inspired by 3D-UNet
networks, producing two sets of displacement deformation elds (DDFs) for for-
ward and backward information propagation between adjacent slices. The learn-
ing process entails generating neighboring slices around each source slice using
the DDFs and minimizing a boundary-preserving loss function that combines a
structural similarity index and an edge-preserving loss. For mask propagation,
Vol2Flow applies sequential transformations to generate pseudo labels for slices,
introducing a renement function to correct errors. The renement method em-
ploys a non-linear classier, specically an SVM with an RBF kernel, to improve
the classication of pixels during mask propagation.

2.2 Epistemic Uncertainty Quantication

Quantication of epistemic uncertainty in deep learning models is challenging
since it entails learning a distribution over model weights [16]. The variance
in predictions made with weights sampled from such a distribution is directly
proportional to the degree of model uncertainty, where low prediction variance
signies low uncertainty or high model condence. Although scalable epistemic
UQ techniques have been proposed and successfully applied to supervised seg-
mentation models [2], extending these advancements to slice propagation tech-
niques has not been studied. The following section describes ve state-of-the-art
epistemic UQ methods and how we adapt them specically for slice propagation
tasks.

Deep Ensemble [18] enhances prediction accuracy and robustness by lever-
aging multiple independently initialized, identically trained models (e.g., ensem-
ble members) [18]. In this frequentist approach to UQ, the predictions from each
ensemble member provide a distribution. The mean of this distribution provides a
robust ensemble prediction, and the variance captures epistemic uncertainty. We
used four initializations to train slice propagation models, namely base initializa-
tion (similar to original implementations), Kaiming (He) uniform initialization,
Glorot (Xavier) uniform initialization, and a custom normal initialization. This
strategy ensures each model in the ensemble explores dierent data represen-
tations, encouraging prediction diversity for calibrated UQ and enhancing the
ensemble’s generalization capabilities.

Batch Ensemble [29] improves on the traditional deep ensemble approach
by signicantly reducing the computational and memory demands, which typi-
cally scale linearly with the number of ensemble members. Batch ensemble com-
promises between a single network and a full ensemble by dening member-
specic convolutional weight matrix Wi, as the Hadamard product of a shared
base weight matrix Wshared and two member-specic rank-one vectors, ri and
si: Wi = ri ◦Wshared ◦ sTi . When training slice propagation networks with the
batch ensemble, predictions are made with each set of member-specic weights.
Then, similar to deep ensemble, member predictions are averaged in inference
to provide a robust prediction, and the variance in predictions provides UQ.
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Monte Carlo (MC) Dropout [8] is a widely used regularization tech-
nique that also provides a scalable solution to approximate variational inference
[8]. MC Dropout involves randomly omitting model weights during training and
inference, enabling the model to produce a range of predictions for the same in-
put. This variability captures the degree of model certainty, as condent models
will make similar predictions with dierent dropout masks. For slice propaga-
tion methods, we place a dropout layer within each network block after ReLU
activation [1]. The dropout rate was selected to be 0.2 in hyperparameter tuning
to balance accuracy and model robustness.

Concrete Dropout [9]. MC dropout requires time-consuming and compu-
tationally expensive manual tuning of layer-wise dropout rates to acquire well-
calibrated UQ. However, concrete dropout employs a continuous relaxation of the
dropout’s discrete masks, allowing for the automatic optimization of per-layer
dropout probabilities in tandem with network weights, signicantly streamlin-
ing the process. We integrated spatial concrete dropout within all convolutional
layers of slice propagation methods.

Stochastic Weight Averaging Gaussian (SWAG) [20] builds upon
stochastic weight averaging [13], a technique that denes model weights as the av-
erage of weights traversed during stochastic gradient descent (SGD) after initial
convergence to nd a broader optimum. SWAG ts a Gaussian distribution over
these traversed weights to model the posterior distribution of network weights.
The posterior estimation facilitates the generation of a distribution of predictions
that capture model uncertainty. The mean weights and their covariance matrices
are obtained during post-convergence training to estimate the Gaussian weight
distribution for slice propagation. We then sampled this distribution to obtain
the varied predictions needed for uncertainty estimation in inference.

Evaluation Metrics. To evaluate the performance of slice propagation meth-
ods, we utilize the Dice Similarity Coecient (DSC)[15,7]. Additionally,
to check if the predicted segmentation conforms to the actual organ boundaries
and surfaces, we also report Surface Dice and Average Hausdor Distance
(AHD). To assess the UQ calibration, we consider the Pearson correlation
coecient (r) between the predicted epistemic uncertainty and prediction error
(1-DSC). A higher r value signies better UQ calibration, as we would expect
model uncertainty to be high when the prediction error is high. We also utilize the
area under the error retention curve (R-AUC) to jointly assess segmen-
tation accuracy and UQ calibration. Error-retention curves plot the prediction
error (100 - DSC) against the proportion of data retained after iteratively exclud-
ing predictions with the highest uncertainty. The R-AUC quanties the model’s
performance across dierent levels of uncertainty retention. A lower R-AUC in-
dicates better accuracy since it implies lower error across retained predictions,
and better UQ calibration since it implies uncertainty/error correlation.



6 Rachaell Nihalaani et al.

3 Results

Datasets Used. Our study employs a diverse array of datasets for training and
evaluation. We sourced our training data from: KiTS [11], which includes 300
multi-phase CT scan volumes; CT Lymph Nodes [24], utilizing the 86 abdom-
inal lymph node volumes; and Pancreas-CT [23], with 82 volumes of abdom-
inal contrast-enhanced 3D CT scans. For evaluation, we used three datasets:
SLIVER07 [10], consisting of 20 clinically sourced 3D CT liver volumes; CHAOS
[28], a comprehensive multi-organ segmentation dataset where we used only CT-
based liver segmentation; and DecathSpleen [26], featuring 41 volumes of portal
venous phase 3D CT scans for spleen segmentation.
Implementation Details. We used the original implementations of Sli2Vol [30]
and Vol2Flow [5]. For UQ methods on 3D volume segmentation, we referenced
the implementation release by a recent UQ benchmark [2]. We scale the slice
featuring the anatomy’s largest manually annotated area as the annotated slice.
We used four ensemble members for ensemble-based models and 30 posterior
samples to get an average prediction for dropout and SWAG methods. 4

3.1 Uncertainty Quantication Results

UQ Methods Performance Insights. Table 1 presents comprehensive results
of UQ methods applied across three datasets for both Sli2Vol and Vol2Flow.
Most UQ methods improve upon baseline performances in DSC and surface
metrics, underscoring their utility in boosting model precision and reliability
across varied datasets and tasks.

Baseline deterministic models, without the integration of UQ, establish a
fundamental level of accuracy, yet exhibit notable boundary detection challenges,
as indicated by higher AHD values. Concrete dropout demonstrates superior
segmentation and uncertainty estimation, outperforming other UQ methods in
accuracy. SWAG shows higher UQ calibration than ensemble methods even with
low accuracy models indicating that SWAG is a good UQ estimator, which will be
important for annotation-ecient models. The SWAG method results in reduced
segmentation accuracy, likely because it utilizes an average of converged weights,
whereas the baseline employs the best of converged weights as assessed by the
validation performance. However, SWAG provides better calibrated UQ than
other methods which suggests that it is learning a wide posterior distribution of
weights, resulting in diverse predictions that provide a poorer averaged estimate
but accurately capture the degree of model condence.

The results highlight the ecacy of dropout techniques, specically concrete
dropout, for their robust segmentation and uncertainty quantication capabil-
ities. Combined with the ease of integration, these robust capabilities make
dropout highly eective for medical imaging tasks. Deep ensemble and batch
ensemble oer a balanced improvement over baselines, and SWAG’s notable un-
certainty estimation ability underscores the need for careful UQ method selection
based on specic application requirements. This analysis emphasizes the critical

4 We will release our code les on GitHub at the end of the study for public use.
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role of choosing the right UQ approach to optimize model performance, consid-
ering the trade-os between reducing errors and enhancing correlation measures.

Table 1. UQ results. Mean and standard deviations of DSC, surface dice, AHD, r,
and R-AUC scores using predictions from Sli2Vol [30] and Vol2Flow [5] on all three
datasets.

Sli2Vol Vol2Flow

UQ Methods DSC ↑ Surface Dice ↑ AHD ↓ r ↑ R-AUC ↓ DSC ↑ Surface Dice ↑ AHD ↓ r ↑ R-AUC ↓

S
L
iv
e
r
0
7

Base (w/o UQ) 91.44±2.94 65.92±6.59 110.70±54.92 - - 92.58±3.68 69.95±4.32 95.34±35.24 - -
Deep Ensemble 91.68±3.02 67.53±7.52 99.32±47.36 0.13 4.09±1.38 92.97±4.15 71.54±5.21 89.47±32.88 0.27 3.25±2.47
Batch Ensemble 91.08±2.91 65.67±8.27 109.32±54.14 0.08 4.48±1.35 92.13±3.77 70.06±5.98 95.15±38.75 0.15 2.95±3.21
MC Dropout 92.40±2.89 67.52±9.28 101.51±43.51 0.19 3.30±1.12 93.58±3.41 71.45±6.89 90.84±27.63 0.35 3.22±3.52

Concrete Dropout 92.48±3.16 68.82±9.45 93.27±43.84 0.23 3.49±1.26 94.02±1.98 72.49±5.66 85.48±29.55 0.43 2.94±2.81

SWAG 83.03±7.33 39.97±1.39 48.62±23.15 0.69 3.21±1.59 85.26±5.74 61.52±9.65 93.84±17.81 0.67 3.17±3.88

D
e
c
a
t
h
S
p
le
e
n Base (w/o UQ) 89.41±8.77 85.97±10.54 19.39±11.84 - - 86.55±7.29 82.24±8.67 15.56±8.68 - -

Deep Ensemble 89.97±8.49 87.42±10.51 16.43±12.01 0.15 5.88±5.44 87.15±7.06 84.98±7.45 14.74±9.25 0.22 5.12±3.97
Batch Ensemble 88.97±8.73 86.06±11.04 19.16±15.85 0.38 6.36±5.42 86.22±7.87 84.00±8.56 15.02±10.57 0.40 5.99±4.52
MC Dropout 90.78±6.85 87.89±9.80 14.67±10.40 0.52 4.84±4.57 89.24±8.24 85.45±10.57 13.95±8.65 0.58 4.78±5.48

Concrete Dropout 91.24±6.83 88.80±9.70 13.78±9.44 0.27 5.05 ± 4.88 90.82±6.54 87.65±9.21 12.84±9.87 0.32 4.56 ± 5.35

SWAG 84.55±9.12 73.00±16.75 15.82±6.56 0.42 4.28 ± 2.69 81.06±10.41 74.58±11.56 13.24±10.45 0.41 4.92 ± 3.58

C
H
A
O
S

Base (w/o UQ) 91.11±8.82 41.96±13.86 67.49±21.41 - - 85.31±4.62 46.54±9.21 62.84±15.55 - -
Deep Ensemble 93.66±7.21 50.70±12.96 65.64±22.40 0.75 7.14±5.23 86.17±4.35 48.62±8.91 59.98±17.24 0.77 6.53±6.11
Batch Ensemble 92.30±6.59 43.20±12.43 67.24±24.25 0.80 7.40±4.64 86.57±5.89 47.56±9.11 62.08±20.57 0.82 6.59±5.22
MC Dropout 93.40±6.77 45.29±12.77 60.14±20.93 0.75 6.53±4.60 87.09±5.61 51.65±8.84 57.84±14.65 0.81 5.89±3.84

Concrete Dropout 92.36±8.02 45.37±13.11 57.67±20.38 0.81 7.68±5.90 86.82±4.89 54.89±10.65 54.58±13.64 0.87 6.12±4.55
SWAG 84.32±6.79 32.70±7.29 48.32±10.62 0.42 4.20±1.63 74.41±5.22 42.26±8.47 58.41±18.54 0.51 5.94±4.87

Performance Trends. In assessing the Sli2Vol and Vol2Flow models, we also
report metrics on a more granular slice-level, shedding light on critical knowl-
edge gaps that are not captured by the mean performance statistics over dataset.
Mean DSC and associated uncertainties, when averaged over large volumes,
could mask the true performance nuances of these models. Our targeted analysis
revealed a discernible performance drop and increased uncertainty in models as
segmentation predictions deviate from the manually annotated slice, as shown
in Figure 1A. This trend is reective of a model’s diminishing accuracy and con-
dence as it ventures further from the annotated slice. We observe that the error
and uncertainty estimates correctly correlate across distances from the annotated
slice, suggesting accurate condence estimation. Figures 1B and C bring to at-
tention the steeper decline in surface dice scores as compared to overall DSC,
signaling a quicker degradation in the model’s ability to retain surface informa-
tion shortly beyond the annotated slice. This quick degradation is problematic as
it indicates a rapid loss of accuracy in capturing the intricate contours and edges
of anatomical structures. In medical applications, such as surgical planning or
tumor resection, the precise delineation of surfaces is crucial. Imprecise surface
segmentation can lead to inaccurate identication of tumor margins or criti-
cal anatomical landmarks, compromising treatment outcomes. A similar pattern
emerged in the Vol2Flow analysis, shown in Figure 2, arming this as a broader
trend across both modeling approaches. Supplementary GIFs are provided to
visually demonstrate the progression of predicted segmentations and associated
uncertainties through a volume.

Failure Modes in Slice Propagation Methods. Through detailed analysis
of Figures 1 and 2, along with observations from our study, we identify several
key limitations of Sli2Vol and Vol2Flow models: (a) A pronounced decline in
performance metrics is observed as soon as models predict slices merely 5-20
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Fig. 1. Sli2Vol accuracy and uncertainty variation as function of distance

from annotated slice A. Comparative analysis of variability in DSC and uncertainty
metrics relative to the distance from the annotated slice when using concrete dropout

(dataset: DecathSpleen). Performance metrics (B) DSC,(C) surface dice and (D)
uncertainty for all UQ Methods, relative to the distance from the annotated slice.

Fig. 2. Vol2Flow accuracy and uncertainty variation as function of distance

from annotated slice A. Comparative analysis of variability in DSC and uncertainty
metrics relative to the distance from the annotated slice when using MC dropout

(dataset: CHAOS). Performance metrics (B) DSC,(C) surface dice and (D) uncer-
tainty for all UQ Methods, relative to the distance from the annotated slice.

mm away from the annotated slice. Notably, the accuracy of surface metrics
diminishes starting from slices closely adjacent to the annotated slice. (b) The
models exhibit diculties in handling non-convex anatomical structures where
the segmentation is discontinuous or due to branching anatomical structures. For
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example, across slices, femur bone segmentation becomes split into two substruc-
tures, the greater trochanter, and the femoral head. (c) Training via a surrogate
registration task can inadvertently bias models toward assuming structural con-
tinuity since it emphasizes aligning continuous structures across slices. This bias
results in the failure of the models to recognize the natural discontinuity or
endpoints of anatomical features, resulting in over-extended segmentations.

4 Conclusion and Future Work

This study focuses on using slice propagation to reduce manual annotations in
training and limit inference annotations to a single slice, addressing the trustwor-
thiness of these methods amid minimal expert-driven supervision. We integrated
ve UQ methods to evaluate their accuracy and uncertainty calibration in medi-
cal image analysis. Our assessments demonstrate that incorporating UQ into slice
propagation approaches enhances predictive accuracy and provides usable con-
dence estimation, eectively bridging the gap between semi-automatic methods
and user reliance. Furthermore, our investigation uncovers critical failure modes
in slice propagation methods that may go unnoticed by users. Recognizing these
shortcomings is pivotal to inform improvement and continuous model rene-
ment. Future work could explore the inuence of domain variation (e.g., CT vs
MRI) on uncertainty estimation. Additionally, there is substantial potential to
adapt UQ techniques to more adeptly handle the intricate challenges of slice
propagation. Calibrated UQ could guide the development of methodologies ca-
pable of mitigating the failure modes observed in current segmentation methods.
This work reveals the potential and shortcomings of slice propagation segmen-
tation models with UQ, increasing the potential for safe, feasible self-supervised
anatomy segmentation.
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Fig. 3. Sli2Vol accuracy and uncertainty variation as function of distance

from annotated slice A. Comparative analysis of variability in DSC and uncertainty
metrics relative to the distance from the annotated slice when using concrete dropout

(dataset: SLiver07). Performance metrics (B) DSC,(C) surface dice and (D) uncer-
tainty for all UQ Methods, relative to the distance from the annotated slice.
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Fig. 4. Comparative analysis of variability in DSC and uncertainty metrics

relative to the distance from the annotated slice This gure presents a compar-
ison of DSC variability and uncertainty metrics across each slice propagation method,
dataset, and UQ method. A consistent trend is observed across all categories. Sup-
plementary GIFs are provided to visually demonstrate the progression of predicted
segmentations and associated uncertainties through a volume.


